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J. Phys.: Condens. Matter l(1989) 2293-2296. Printed in the UK 

LETTER TO THE EDITOR 

Holon statistics 

S E Barnes? 
Department de Physique de la Matibre CondensCe, UniversitC de Genkve, 
24 quai E Ansermet, 1211 Geneva 4, Switzerland 

Received 3 January 1988 

Abstract. It is shown that the holons of Zou and Anderson obey Fermi rather than Bose 
statistics and therefore that superconductivity cannot be associated with the Bose con- 
densation of these entities. It also is shown that the mean-field theory of Kotliar and Lui is 
not valid for a degeneracy N = 2 in one dimension. 

As a model for high-temperature superconductivity in the perovskites, Zou and Ander- 
son (1988) have used the slave-boson method of Barnes (1976) to formulate the resonant- 
valence-bond (RVB) theory for the nearly half-filled Hubbard Hamiltonian. Because of 
their commutation rules, the bosons, i.e., the holons, introduced with the slave-boson 
method are assumed to undergo Bose-Einstein condensation. The purpose of this Letter 
is to show that, with the type of mean-field approximation used by Zou and Anderson, 
the statistics of the holons is essentially that of spinless, charged fermions. To obtain 
superconductivity involving the holons it will be necessary to cause pairs to form. 

In order to illustrate the central point, it is useful to considera simple one-dimensional 
tight-binding model for spinless electrons. This is a trivial model for which the result is 
known. The Hamiltonian is 

The slave-boson representation can be introduced in the usual fashion. There is a 
fermionf; associated with the state Inl) which has an electron at the site n and a boson 
b i  associated with the empty /no) site. An arbitrary operator 0 is replaced by its slave- 
boson equivalent 

f (n  1 1 8 I n l)fn + f t, (n  1 1 0 I n0)b + b (no I 0 1 n l)fn + b A (no 1 6 1 nO)b 

where, also as usual, there is a constraint 

Q ,  = ftJn + bib,, = 1. (2) 
The slave-boson version of the Hamiltonian is 

~ = t E f t n + l b n + l b ? n  + HC 
n 

(3) 

which, as will be seen explicitly below is, apart from the absence of a spin sum, identical 
t Permanent address (valid after 1 July 1989): Department of Physics, University of Miami, Coral Gables, 
FL 33124, USA. 
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to the X o  of Zou and Anderson (when their amplitudes dt and d associated with the 
doubly occupied site are eliminated). Since these are spinless electrons, the spinons and 
their associated degrees of freedom are absent. The role the holons play in this tight- 
binding model is therefore surprisingly similar to their role in the infinite-U Hubbard 
model. 

The single-particle Green function 

At first sight the application of the equation-of-motionmethod to theslaue-bosonversion 
of the Green function would appear intractable since it generates a set of Green functions 
of higher and higher order (in the sense of being n-particle). However, upon exam- 
ination, it is easily seen that the constraint Q, = 1 can be factored out of these higher- 
order Green functions reducing them all to first order. The details are of only technical 
interest and will not be given here since the result is trivial to obtain directly, i.e. 

which can be solved in the usual fashion to give a dispersion relation &k = 2t cos k 

It is perhaps tempting to make a mean-field approximation by replacing the Bose 
operators by c-numbers. This would correspond to the approach of Kotliar and Lui 
(1988) for the Hubbard model. On doing this, the Hamiltonian reduces to 

(nk < n). 

% = t6 2 f',+lfn + HC 
n 

which is just another tight-binding model in which the band width has been reduced by 
6, the density of holes. Clearly this gives a totally wrong answer for the kinetic energy 
in the case of a nearly filled band. It corresponds to the case when N = 1, q = 1/N, in 
their notation, and shows the expansion about the large-Nlimit is useless for this extreme 
case of N = 1. Clearly a strategy of replacing the axillary fermion combination f ' f  by 
c-numbers suffers from equivalent problems. 

Such a simple mean-field approach does not work because the holon and its fermion 
partner are highly correlated. To illustrate this it is useful to write the Hamiltonian as 

The physical sub-space has only a single axillary particle for each site; thus if bntl has a 
finite effect, the state upon which operates is the vacuum and the result is a state 
with a single fn fermion. Similarly, if b; is to have a finite effect it must be thatf, created 
the vacuum. To construct an accurate hole picture, it is observed that a state in the 
physical space is specified once the position of all the holons is given and that the 
interaction X is only effective if the site adjacent to a given holon does not contain 
another holon. In this case the combination of operatorsf, f i+l is a projection operator, 
i.e., the relevant matrix element is unity, and so in effect f n f L + l  = 1. It would appear 
that the effective Hamiltonian would be 2 = t z,, b: bn+l  + HC. However, the wavefunc- 
tion constructed with the bs is even under the interchange of particles while the exact 
wavefunction is odd. It follows, in order to have the correct symmetry properties, that 
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one must change the bs to fermions, so that the accurate effective Hamiltonian for holons 
is 

where the Fs obey fermion statistics. Clearly the Fermi statistics for the holons correctly 
reflect the constraint on the holon occupation number, and imply that no two k-values 
are identical. For M holons and X sites, Hilbert space is spanned by the N!/(N - M ) ! M !  
axillary real-space vectors and it is easy to check that there are the same number of k- 
space vectors; it follows that the solution is complete. It is also possible to create an 
equivalent-particle version of the theory by making the replacement b,+,bn+l = 1. 

In order to calculate the Green function in the holon theory, it is only necessary to 
observe that, by essentially the same argument, the individual f s  in, e.g., CA = fLb ,  
might be replaced by unity and therefore that 

Gn,rn(t) = (TzFn(r)Fk(O))  (9) 

where the replacement of the bosons with fermions leads to the appropriate periodicity 
in imaginary time. 

Turning finally to the real problem of interest, the Hubbard Hamiltonian is 

x = t C. ( c ~ + ~ , c , ,  + HC) = U C nn n,; 
na n 

but, in the limit of U+ x, the slave-boson version differs from the tight-binding model 
only in having a spin sum, i.e., 

and Q n  = 2 , f ; , f n u  + bib,, = 1. 
The one-dimensional problem is trivial to solve and is sufficient to illustrate that 

holons remain fermion particles. A treatment of the two-dimensional problem, to be 
described elsewhere, leads to essentially the same conclusion. The same trick can be 
used, i.e. it is observed that the real-space configuration of the system and matrix 
elements of X are determined once the location of all the holons is given. This works 
only in one dimension because the original electrons cannot interchange their positions. 
Although it is not possible to specify which combinationff’ is equal to unity and which 
is zero, for a given finite matrix element of X ,  it is always the case that 

and, of course, it also remains the case that there cannot be two holons at a given lattice 
site. It follows that this problem reduces in exactly the same fashion as does the tight- 
binding model, i.e., the effective-holon Hamiltonian is simply equation (8). The only 
new feature is the very large spin degeneracy 2(”’- of each holon state. It remains the 
case that the holons obey Fermi statistics. (There is not an equivalent-particle version of 
the theory in this case.) 

These results for the Hubbard Hamiltonian demonstrate that the Kotliar and Lui 
mean-field approach also fails for N = 2 with q = 1/2N, at least in one dimension. Since 
there is no specific dimensional criterion involved in the existence of the large-N saddle 
point there is no reason to believe that it works in other spatial dimensions. It might be 



2296 Letter to the Editor 

noted that the saddle point corresponds to a time-dependent equation for b(z) while a 
static solution is assumed. It might be argued that in thermal equilibrium a stationary 
solution must apply; however, b is not a physical quantity and a time-dependent solution 
for b(z)  in which the physical expectation values are stationary cannot be excluded. 

The author wishes to thank IBM Yorktown Heights and Universite de Genbve for their 
generous hospitality. 
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